Hiperplano
Hiperplano n.m. MAT Subespacio vectorial de n-1 dimensiones de un espacio vectorial de n dimensiones (p. ej., un espacio de tres dimensiones para un hiperespacio de cuatro dimensiones). Definición formal En general, un hiperplano es un espacio afín de codimensión 1. En otras palabras, un hiperplano es un análogo de muchas dimensiones al plano (de dos dimensiones) en el espacio tridimensional. Un hiperplano afín en un espacio n-dimensional puede ser descrito por una ecuación lineal no degenerada con la siguiente forma: a1x1 + a2x2 + ... + anxn = b. Aquí no degenerada significa que no todas las ai son 0. Si b=0, se obtiene un hiperplano lineal, que pasa a través del origen. Las dos mitades del espacio definidas por un hiperplano en espacios de n dimensiones son: a1x1 + a2x2 + ... + anxn ≤ b y a1x1 + a2x2 + ... + anxn ≥ b.
Está viendo el 41% del contenido de este artículo.
Solicite el acceso a su biblioteca para poder consultar nuestros recursos electrónicos.
Ventajas de ser usuario registrado.
Acceso sin restricciones a todo el contenido de la obra.
Sólo información contrastada de prestigiosos sellos editoriales.
Contenidos de renombrados autores y actualizaciones diarias.
La nueva plataforma del Consorcio ofrece una experiencia de búsqueda de fácil manejo y de gran usabilidad. Contiene funciones únicas que permiten navegar y realizar consultas de manera ágil y dinámica.
Convenios especiales: Enseñanza Bibliotecas públicas